神戸の減災研究会

WG1

神戸市における路面下空洞監理手法の検討

背景

• 路面下空洞が原因の道路陥没事故は世界各地の都市で発生

東京都調布市での陥没(2020/10)

テレ朝news https://news.tv:acahi.co.jp/news_international/articles/000222735.ht

ニューヨークの道路陥没(2021/07)

神奈川県横浜市の道路陥没(2020/07)

ピッツバーグ市内陥没事故(2019/11)

神戸の減災研究会WG1委員名簿

117 ***********************************	
団 体 名	委員
株式会社アサノ大成基礎エンジニアリング	桃井 信也
応用地質株式会社	木下 貴裕
株式会社カナン・ジオリサーチ	中前 茂之
株式会社カナン・ジオリサーチ	片山 辰雄
協和設計株式会社	西岡 孝尚
協和設計株式会社	田中 正吾
ジオ・サーチ株式会社	久間 慎之
ジオ・サーチ株式会社	田口 雄規
神鋼スラグ製品株式会社	松元 弘昭
大嘉産業株式会社	古田 研二
地球観測株式会社	福田 芳雄
中央開発株式会社	前田 直也
中央開発株式会社	松元 大樹
東亜道路工業株式会社	塚本 真也
日鉄スラグ製品株式会社	水田 智幸
株式会社 ニュージェック	山本 龍
一般財団法人 建設工学研究所	中西 典明
一般財団法人 GRI財団	藤原 照幸

0

路面のたわみに着目した陥没危険度評価に関する検討

神戸市における路面下空洞調査

一次調査

(路面下空洞探査車)

データ取得 ↓ 解析 □

異常箇所抽出 (位置・発生深度・広がり)

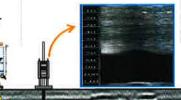
陥没危険度評価 二次調査対象箇所検討

二次調査

(スコープ調査)

空洞の有無・空洞厚み 舗装種別・舗装厚 など地下情報の収集

補修優先度の検討

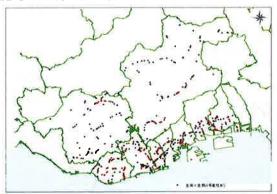

開削調査

(補修工事)

発生原因の確認

↓

再発防止を含む補修



,

Step1 空洞の変化状況の把握

神戸市内の空洞調査はすでに2巡目となっている

各実施時の空洞の位置、大きさ、深さをGIS上に整理

2回実施されたの空洞調査結果から、空洞の大きさ、深さ、箇所数等の変化状況を把握する。

Step 2-2 空洞進展状況と地質区分の関係分析

変化状況をJIBANKUN上に整理する。(地質区分と空洞変化)

空洞の進展と地質区分の関係を把握

Step 2-1 空洞進展状況と微地形の関係分析

変化状況をJIBANKUN上に整理する。(微地形と空洞変化)

空洞の進展と微地形の関係を把握

Step2-3 道路特性と空洞進展状況の関係分析

【 路線区分別異常簡所発生状況 】

路線区分	調整 測線長 (km)	異常 簡所数 (個所)	質常應所 発生率 (應所/km)
緊急輸送道路· 幹線道路	約240	約230	0,96
2級河川 沿い道路	約9,5	約60	5.79
その他要望路線	約8.5	約80	9,13

【 道路区分別空洞発生状況 】

医分	発生率 (箇所/km)		
国連府 県道	0.27		
東京23区	0.98		
その他 自治体	0.59		

※出展「路面下に発生する空洞の発生状況の分析と書祭」 (小池ら、土木学会第72 同年次学商連議会主政29年9月)

緊急輸送路の発生率は、東京23区と同等である。

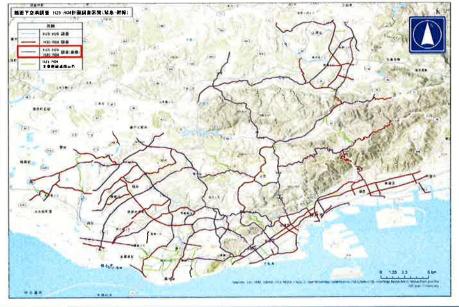
2級河川道路・その他要望路線は過去の陥没履歴や空洞発生が懸念される路線を 選定し調査されており、全国空洞発生率の平均よりも大幅に高い発生率であった。

今回研究会:空洞進展状況と路線特性の関係を把握

8

路面下空洞進展状況と各種要因との関係

空洞が進展しやすい路線特性を把握

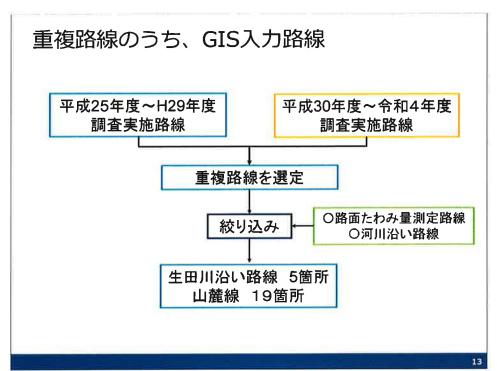


神戸市における路面下空洞監理手法の検討

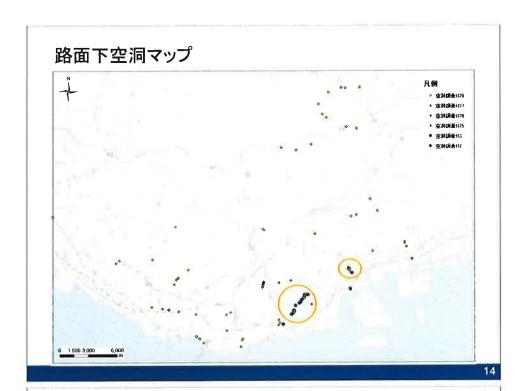
- ▶重点路線の選定
- ト各路線の空洞調査頻度
- ▶日常点検のタイミング、留意点など
- >空洞危険度評価手法(路面変位計測等)
- ▶港湾道路の路面下空洞監理計画

9

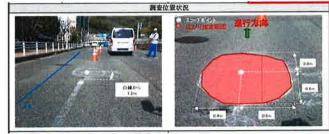
重複調査路線

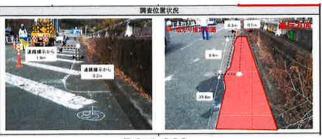


中間報告


平成25年度~平成29年度 GIS入力空洞箇所

年度	空	一次調査延長		
	一次調査	二次調査	空洞判定	(km)
H25	34	12	10	66.78
H26	108	0	0	187.908
H27	184	8	5	216.831
H28	177	14	13	245.484
H29	166	115	110	264.401
合計	669	149	138	981.404


ij.



空洞調書(抜粋)

R2-1-001

R2-1-002

16

今後の進め方

- ▶GIS入力路線追加
- ▶補修履歴の確認
- ▶地盤情報との重ね合わせ
- ▶地形情報との重ね合わせ
- ▶道路特性の確認
- ▶空洞の進展していない箇所との比較

空洞進展箇所の分析